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Mohit Bansal and Dan Klein
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Abstract

We present a simple but accurate parser which exploits both large tree fragments and sym-
bol refinement. We parse with all fragments of the training set, in contrast to much recent
work on tree selection in data-oriented parsing and tree-substitution grammar learning. We
require only simple, deterministic grammar symbol refinement, in contrast to recent work on
latent symbol refinement. Moreover, our parser requires no explicit lexicon machinery, in-
stead parsing input sentences as character streams. Despite its simplicity, our parser achieves
accuracies of over 88% F1 on the standard English WSJ task, which is competitive with sub-
stantially more complicated state-of-the-art lexicalized and latent-variable parsers. Additional
specific contributions center on making implicit all-fragments parsing efficient, including a
coarse-to-fine inference scheme and a new graph encoding.!

1 Introduction

Modern NLP systems have increasingly used data-intensive models that capture many or even all
substructures from the training data. In the domain of syntactic parsing, the idea that all training
fragments?> might be relevant to parsing has a long history, including tree-substitution grammar
(data-oriented parsing) approaches [Scha, 1990, Bod, 1993, Goodman, 1996a, Chiang, 2003] and
tree kernel approaches [Collins and Duffy, 2002]. For machine translation, the key modern ad-
vancement has been the ability to represent and memorize large training substructures, be it in
contiguous phrases [Koehn et al., 2003] or syntactic trees [Galley et al., 2004, Chiang, 2005, De-
neefe and Knight, 2009]. In all such systems, a central challenge is efficiency: there are generally
a combinatorial number of substructures in the training data, and it is impractical to explicitly ex-
tract them all. On both efficiency and statistical grounds, much recent TSG work has focused on
fragment selection [Zuidema, 2007, Cohn et al., 2009, Post and Gildea, 2009].

At the same time, many high-performance parsers have focused on symbol refinement approaches,
wherein PCFG independence assumptions are weakened not by increasing rule sizes but by subdi-
viding coarse treebank symbols into many subcategories either using structural annotation [John-
son, 1998, Klein and Manning, 2003] or lexicalization [Collins, 1999, Charniak, 2000]. Indeed,

'This work was published in the 48th Annual Meeting of the Association for Computational Linguistics (ACL).
See Bansal and Klein [2010].

’In this work, a fragment means an elementary tree in a tree-substitution grammar, while a subtree means a frag-
ment that bottoms out in terminals.



a recent trend has shown high accuracies from models which are dedicated to inducing such sub-
categories [Henderson, 2004, Matsuzaki et al., 2005, Petrov et al., 2006]. In this work, we present
a simplified parser which combines the two basic ideas, using both large fragments and symbol
refinement, to provide non-local and local context respectively. The two approaches turn out to
be highly complementary; even the simplest (deterministic) symbol refinement and a basic use
of an all-fragments grammar combine to give accuracies substantially above recent work on tree-
substitution grammar based parsers and approaching top refinement-based parsers. For example,
our best result on the English WSJ task is an F1 of over 88%, where recent TSG parsers® achieve
82-84% and top refinement-based parsers* achieve 88-90% (e.g., Table 5).

Rather than select fragments, we use a simplification of the PCFG-reduction of DOP [Goodman,
1996a] to work with all fragments. This reduction is a flexible, implicit representation of the
fragments that, rather than extracting an intractably large grammar over fragment rypes, indexes
all nodes in the training treebank and uses a compact grammar over indexed node tokens. This
indexed grammar, when appropriately marginalized, is equivalent to one in which all fragments
are explicitly extracted. Our work is the first to apply this reduction to full-scale parsing. In
this direction, we present a coarse-to-fine inference scheme and a compact graph encoding of the
training set, which, together, make parsing manageable (in terms of speed and memory). This
tractability allows us to avoid selection of fragments, and work with all fragments.

Of course, having a grammar that includes all training substructures is only desirable to the extent
that those structures can be appropriately weighted. Implicit representations like those used here
do not allow arbitrary weightings of fragments. However, we use a simple weighting scheme
which does decompose appropriately over the implicit encoding, and which is flexible enough to
allow weights to depend not only on fragment frequency but also on fragment size, node patterns,
and certain lexical properties. Similar ideas have been explored in Bod [2001], Collins and Duffy
[2002], and Goodman [2003]. Our model empirically affirms the effectiveness of such a flexible
weighting scheme in full-scale experiments.

We also investigate parsing without an explicit lexicon. The all-fragments approach has the advan-
tage that parsing down to the character level requires no special treatment; we show that an explicit
lexicon is not needed when sentences are considered as strings of characters rather than words.
This avoids the need for complex unknown word models and other specialized lexical resources.

The main contribution of this work is to show practical, tractable methods for working with an
all-fragments model, without an explicit lexicon. In the parsing case, the central result is that accu-
racies in the range of state-of-the-art parsers (i.e., over 88% F1 on English WSJ) can be obtained
with no sampling, no latent-variable modeling, no smoothing, and even no explicit lexicon (hence
negligible training overall). These techniques, however, are not limited to the case of monolingual
parsing, offering extensions to models of machine translation, semantic interpretation, and other
areas in which a similar tension exists between the desire to extract many large structures and the
computational cost of doing so.

3Including Zuidema [2007], Cohn et al. [2009], Post and Gildea [2009]. Zuidema [2007] incorporates deterministic
refinements inspired by Klein and Manning [2003].
“Including Collins [1999], Charniak and Johnson [2005], Petrov and Klein [2007].
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Figure 1: Grammar definition and sample derivations and fragments in the grammar for (a) the explicitly extracted
all-fragments grammar G, and (b) its implicit representation G*.

2 Representation of Implicit Grammars

2.1 All-Fragments Grammars

We consider an all-fragments grammar G (see Figure 1(a)) derived from a binarized treebank B.
G is formally a tree-substitution grammar [Resnik, 1992, Bod, 1993] wherein each subgraph of
each training tree in B is an elementary tree, or fragment f, in G. In GG, each derivation d is a tree
(multiset) of fragments (Figure 1(c)), and the weight of the derivation is the product of the weights
of the fragments: w(d) = [[;.,w(f). In the following, the derivation weights, when normalized
over a given sentence s, are interpretable as conditional probabilities, so GG induces distributions of
the form P(d|s).

In models like G, many derivations will generally correspond to the same unsegmented tree,
and the parsing task is to find the tree whose sum of derivation weights is highest: %,,,, =
arg max, » ., w(d). This final optimization is intractable in a way that is orthogonal to this work
[Sima’an, 1996]; we describe minimum Bayes risk approximations in Section 4.

2.2 Implicit Representation of G

Explicitly extracting all fragment-rules of a grammar G is memory and space intensive, and im-
practical for full-size treebanks. As a tractable alternative, we consider an implicit grammar G
(see Figure 1(b)) that has the same posterior probabilities as GG. To construct G, we use a simpli-



fication of the PCFG-reduction of DOP by Goodman [1996a].> G has base symbols, which are
the symbol types from the original treebank, as well as indexed symbols, which are obtained by
assigning a unique index to each node token in the training treebank. The vast majority of symbols
in G! are therefore indexed symbols. While it may seem that such grammars will be overly large,
they are in fact reasonably compact, being linear in the treebank size B, while G is exponential
in the length of a sentence. In particular, we found that G was smaller than explicit extraction of
all depth 1 and 2 unbinarized fragments for our treebanks — in practice, even just the raw treebank
grammar grows almost linearly in the size of B.°

There are 3 kinds of rules in G, which are illustrated in Figure 1(b). The BEGIN rules transition
from a base symbol to an indexed symbol and represent the beginning of a fragment from G. The
CONTINUE rules use only indexed symbols and correspond to specific depth-1 binary fragment
tokens from training trees, representing the internal continuation of a fragment in GG. Finally, END
rules transition from an indexed symbol to a base symbol, representing the frontier of a fragment.

By construction, all derivations in G will segment, as shown in Figure 1(b), into regions cor-
responding to fokens of fragments from the training treebank 5. Let 7 be the map which takes
appropriate fragments in G (those that begin and end with base symbols and otherwise contain
only indexed symbols), and maps them to the corresponding f in G. We can consider any deriva-
tion d’ in G! to be a tree of fragments f!, each fragment a token of a fragment type f = 7(f%)
in the original grammar G. By extension, we can therefore map any derivation d’ in G to the
corresponding derivation d = 7(d’) in G.

The mapping 7 is an onto mapping from G’ to G. In particular, each derivation d in G has a non-
empty set of corresponding derivations {d’} = 7~1(d) in G, because fragments f in d correspond
to multiple fragments f! in G that differ only in their indexed symbols (one f’ per occurrence of
f in B). Therefore, the set of derivations in G is preserved in Gf. We now discuss how weights
can be preserved under 7.

2.3 Equivalence for Weighted Grammars

In general, arbitrary weight functions w on fragments in G do not decompose along the increased
locality of G!. However, we now consider a usefully broad class of weighting schemes for which
the posterior probabilities under G of derivations d are preserved in G!. In particular, assume
that we have a weighting w on rules in G which does not depend on the specific indices used.
Therefore, any fragment f will have a weight in G’ of the form:

Wl(fl) = wBEG]N(b) H WCONT(T) H WEND(e)

rec ecE

3The difference is that Goodman [1996a] collapses our BEGIN and END rules into the binary productions, giving a
larger grammar which is less convenient for weighting.

®Just half the training set (19916 trees) itself had 1.7 million depth 1 and 2 unbinarized rules compared to the 0.9
million indexed symbols in G (after graph packing). Even extracting binarized fragments (depth 1 and 2, with one
order of parent annotation) gives us 0.75 million rules, and, practically, we would need fragments of greater depth.



where b is the BEGIN rule, r are CONTINUE rules, and e are END rules in the fragment fI (see
Figure 1(b)). Because w is assumed to not depend on the specific indices, all f/ which correspond
to the same f under 7 will have the same weight w;(f) in G'.

In this case, we can define an induced weight for fragments f in G by

we(f) = Z WI(fI) = n(f)wr(f)
frem=1(f)

= n(f)wsean (D) H weont (1) H wenp (€')

r'ec e/€E

where now V', 7’ and ¢’ are non-indexed type abstractions of f’s member productions in G! and
n(f) = |7~1(f)| is the number of tokens of f in B.

Under the weight function wg( f), any derivation d in G will have weight which obeys

we(d) = [[we(f) =[] n(f)wi(f)
fed fed

=) wi(d)

dled

and so the posterior P(d|s) of a derivation d for a sentence s will be the same whether computed
in G or G!. Therefore, provided our weighting function on fragments f in G' decomposes over
the derivational representation of f in G, we can equivalently compute the quantities we need for
inference (see Section 4) using G/ instead.

3 Parameterization of Implicit Grammars

3.1 Classical DOP1

The original data-oriented parsing model ‘DOP1’ [Bod, 1993] is a particular instance of the gen-
eral weighting scheme which decomposes appropriately over the implicit encoding, described in
Section 2.3. Figure 2 shows rule weights for DOP1 in the parameter schema we have defined.
The END rule weight is 0 or 1 depending on whether A is an intermediate symbol or not.” The
local fragments in DOP1 were flat (non-binary) so this weight choice simulates that property by
not allowing switching between fragments at intermediate symbols.

The original DOP1 model weights a fragment f in G as wg(f) = n(f)/s(X), i.e., the frequency
of fragment f divided by the number of fragments rooted at base symbol X. This is simulated
by our weight choices (Figure 2) where each fragment f! in G has weight w;(f7) = 1/s(X)
and therefore, we(f) = > prcq 1y wr(f1) = n(f)/s(X). Given the weights used for DOP1, the

recursive formula for the number of fragments s(X;) rooted at indexed symbol X; (and for the

"Intermediate symbols are those created during binarization.
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Figure 2: Rules defined for grammar G and weight schema for the DOP1 model, the Min-Fragments model (Good-
man [2003]) and our model. Here s(X) denotes the total number of fragments rooted at base symbol X .

CONTINUE rule X; — Y; Zj) is
s(Xi) = (1 +s(Y))(1 + s(Zk)), (1)

where s(Y;) and s(Zj) are the number of fragments rooted at indexed symbols Y; and Z;, (non-
intermediate) respectively. The number of fragments s(X ) rooted at base symbol X is then s(X) =

in s(Xi)-

Implicitly parsing with the full DOP1 model (no sampling of fragments) using the weights in
Figure 2 gives a 68% parsing accuracy on the WSJ dev-set.® This result indicates that the weight
of a fragment should depend on more than just its frequency.

3.2 Better Parameterization

As has been pointed out in the literature, large-fragment grammars can benefit from weights of
fragments depending not only on their frequency but also on other properties. For example, Bod
[2001] restricts the size and number of words in the frontier of the fragments, and Collins and
Duffy [2002] and Goodman [2003] both give larger fragments smaller weights. Our model can
incorporate both size and lexical properties. In particular, we set wconr(7) for each binary CON-
TINUE rule r to a learned constant wgepy, and we set the weight for each rule with a POS parent to a
constant w, gx (see Figure 2). Fractional values of these parameters allow the weight of a fragment
to depend on its size and lexical properties.

8For DOP1 experiments, we use no symbol refinement. We annotate with full left binarization history to imitate the
flat nature of fragments in DOP1. We use mild coarse-pass pruning (Section 4.1) without which the basic all-fragments
chart does not fit in memory. Standard WSJ treebank splits used: sec 2-21 training, 22 dev, 23 test.

7



Rule score: (A — B C,i,k,j) = >>"> O(As,4,j)w(Ay = By C.)I(By,i,k)I(C, k, j)

Ty z
Max-Constituent: q(A,i,j) = Zzg(éfrzng(f;)” ) tmaz = arglinaxth(c)
T ce
Max-Rule-Sum: G(A = B Cyi,k, j) = {7 EC) tmaz = argmax)_q(e)
T ec
Max-Variational: q(A— B Cik,j) = Z:(()’?Z;ijc;}i’(]z&’j) tmaz = argrtnax];[tq(e)
€

Figure 3: Inference: Different objectives for parsing with posteriors. A, B, C are base symbols, A,, B, C, are
indexed symbols and %,j,k are between-word indices. Hence, (A,,1,j) represents a constituent labeled with A,
spanning words i to j. [(A,,14,j) and O(A,, 1, j) denote the inside and outside scores of this constituent, respectively.
For brevity, we write ¢ = (A,4,j) ande = (A — B C, i, k, j). Also, t;q. is the highest scoring parse. Adapted from
Petrov and Klein [2007].

Another parameter we introduce is a ‘switching-penalty’ c,, for the END rules (Figure 2). The
DOP1 model uses binary values (0 if symbol is intermediate, 1 otherwise) as the END rule weight,
which is equivalent to prohibiting fragment switching at intermediate symbols. We learn a frac-
tional constant a,, that allows (but penalizes) switching between fragments at annotated symbols
through the formulation ¢, (Xintermediate) = 1 — asp and csp(Xpon—intermediate) = 1 + asp. This
feature allows fragments to be assigned weights based on the binarization status of their nodes.

With the above weights, the recursive formula for s(X;), the total weighted number of fragments
rooted at indexed symbol X, is different from DOP1 (Equation 1). For rule X; — Y; Zy, itis

8(Xi) = weopy-(Csp(Yj) + 8(Y5)) (csp(Zi) + 5(Zk))-
The formula uses w gx in place of wyopy if 7 1s a lexical rule (Figure 2).

The resulting grammar is primarily parameterized by the training treebank 5. However, each set-
ting of the hyperparameters (wWsopy, Wiex, @sp) defines a different conditional distribution on trees.
We choose amongst these distributions by directly optimizing parsing F1 on our development set.
Because this objective is not easily differentiated, we simply perform a grid search on the three
hyperparameters. The tuned values are wyopy = 0.35, wigx = 0.25 and a,, = 0.018. For general-
ization to a larger parameter space, we would of course need to switch to a learning approach that
scales more gracefully in the number of tunable hyperparameters.’

4 Efficient Inference

The previously described implicit grammar G defines a posterior distribution P(d’|s) over a sen-
tence s via a large, indexed PCFG. This distribution has the property that, when marginalized, it is
equivalent to a posterior distribution P(d|s) over derivations in the correspondingly weighted all-
fragments grammar G. However, even with an explicit representation of GG, we would not be able

Note that there has been a long history of DOP estimators. The generative DOP1 model was shown to be incon-
sistent by Johnson [2002]. Later, Zollmann and Sima’an [2005] presented a statistically consistent estimator, with the
basic insight of optimizing on a held-out set. Our estimator is not intended to be viewed as a generative model of trees
at all, but simply a loss-minimizing conditional distribution within our parametric family.



dev (< 40) test (< 40) test (all)

] Model F1 EX F1 EX F1 EX
Constituent 88.4 33.7 88.5 33.0 87.6 30.8
Rule-Sum 88.2 34.6 88.3 33.8 87.4 31.6

Variational 87.7 34.4 87.7 339 86.9 31.6

Table 1: All-fragments WSJ results (accuracy F1 and exact match EX) for the constituent, rule-sum and variational
objectives, using parent annotation and one level of markovization.

to tractably compute the parse that maximizes P(t|s) = Y_,c, P(d|s) = > 1o, P(d'|s) [Sima’an,
1996]. We therefore approximately maximize over trees by computing various existing approxi-
mations to P(t|s) (Figure 3). Goodman [1996b], Petrov and Klein [2007], and Matsuzaki et al.
[2005] describe the details of constituent, rule-sum and variational objectives respectively. Note
that all inference methods depend on the posterior P(t|s) only through marginal expectations of
labeled constituent counts and anchored local binary tree counts, which are easily computed from

P(d'|s) and equivalent to those from P(d|s). Therefore, no additional approximations are made
in G! over G.

As shown in Table 1, our model (an all-fragments grammar with the weighting scheme shown in
Figure 2) achieves an accuracy of 88.5% (using simple parent annotation) which is 4-5% (absolute)
better than the recent TSG work [Zuidema, 2007, Cohn et al., 2009, Post and Gildea, 2009] and also
approaches state-of-the-art refinement-based parsers (e.g., Charniak and Johnson [2005], Petrov
and Klein [2007]).1°

4.1 Coarse-to-Fine Inference

Coarse-to-fine inference is a well-established way to accelerate parsing. Charniak et al. [2006]
introduced multi-level coarse-to-fine parsing, which extends the basic pre-parsing idea by adding
more rounds of pruning. Their pruning grammars were coarse versions of the raw treebank gram-
mar. Petrov and Klein [2007] propose a multi-stage coarse-to-fine method in which they construct a
sequence of increasingly refined grammars, reparsing with each refinement. In particular, in their
approach, which we adopt here, coarse-to-fine pruning is used to quickly compute approximate
marginals, which are then used to prune subsequent search. The key challenge in coarse-to-fine
inference is the construction of coarse models which are much smaller than the target model, yet
whose posterior marginals are close enough to prune with safely.

Our grammar G/ has a very large number of indexed symbols, so we use a coarse pass to prune
away their unindexed abstractions. The simple, intuitive, and effective choice for such a coarse
grammar G is a minimal PCFG grammar composed of the base treebank symbols X and the
minimal depth-1 binary rules X — Y Z (and with the same level of annotation as in the full
grammar). If a particular base symbol X is pruned by the coarse pass for a particular span (7, ;)

10A]l our experiments use the constituent objective except when we report results for max-rule-sum and max-
variational parsing (where we use the parameters tuned for max-constituent, therefore they unsurprisingly do not
perform as well as max-constituent). Evaluations use EVALB, see http://nlp.cs.nyu.edu/evalb/.

9
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Figure 4: Effect of coarse-pass pruning on parsing accuracy (for WSJ dev-set, < 40 words). Pruning increases to the
left as log posterior threshold (PT) increases.

(i.e., the posterior marginal P (X4, j|s) is less than a certain threshold), then in the full grammar
G, we do not allow building any indexed symbol X of type X for that span. Hence, the projection
map for the coarse-to-fine model is 7 : X; (indewed symbol) — X (base symbol).

We achieve a substantial improvement in speed and memory-usage from the coarse-pass pruning.
Speed increases by a factor of 40 and memory-usage decreases by a factor of 10 when we go
from no pruning to pruning with a —6.2 log posterior threshold.!! Figure 4 depicts the variation in
parsing accuracies in response to the amount of pruning done by the coarse-pass. Higher posterior
pruning thresholds induce more aggressive pruning. Here, we observe an effect seen in previous
work (Charniak et al. [1998], Petrov and Klein [2007], Petrov et al. [2008]), that a certain amount
of pruning helps accuracy, perhaps by promoting agreement between the coarse and full grammars
(model intersection). However, these ‘fortuitous’ search errors give only a small improvement
and the peak accuracy is almost equal to the parsing accuracy without any pruning (as seen in
Figure 5). To generate the graph in Figure 5, we used training and dev sentences of length < 20,
because of time and memory constraints of low-pruning experiments. However, we also ran one
full-sized no-pruning experiment with training on all sentences and testing on sentences of length
< 40. The no-pruning test-set accuracy is 88.1% F1 as compared to 88.5% F1 when pruned with
a —6.2 log posterior threshold (which is the result shown in Table 1). This outcome suggests that
the coarse-pass pruning is critical for tractability but not for performance.

10
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Figure 5: Effect of coarse-pass pruning on parsing accuracy (WSJ, training < 20 words, tested on dev-set < 20 words).
This graph shows that the fortuitous improvement due to pruning is very small and that the peak accuracy is almost
equal to the accuracy without pruning (the dotted line).

4.2 Packed Graph Encoding

The implicit all-fragments approach (Section 2.2) avoids explicit extraction of all rule fragments.
However, the number of indexed symbols in our implicit grammar G is still large, because every
node in each training tree (i.e., every symbol token) has a unique indexed symbol. We have around
1.9 million indexed symbol tokens in the word-level parsing model (this number increases further
to almost 12.3 million when we parse character strings in Section 5.1). This large symbol space
makes parsing slow and memory-intensive.

We reduce the number of symbols in our implicit grammar G’ by applying a compact, packed
graph encoding to the treebank training trees. We collapse the duplicate subtrees (fragments that
bottom out in terminals) over all training trees. This keeps the grammar unchanged because in an
tree-substitution grammar, a node is defined (identified) by the subtree below it. We maintain a
hashmap on the subtrees which allows us to easily discover the duplicates and bin them together.
The collapsing converts all the training trees in the treebank to a graph with multiple parents
for some nodes as shown in Figure 6. This technique reduces the number of indexed symbols
significantly as shown in Table 2 (1.9 million goes down to 0.9 million, reduction by a factor of
2.1). This reduction increases parsing speed by a factor of 1.4 (and by a factor of 20 for character-
level parsing, see Section 5.1) and reduces memory usage to under 4GB.

We store the duplicate-subtree counts for each indexed symbol of the collapsed graph (using a
hashmap). When calculating the number of fragments s(X;) parented by an indexed symbol X;
(see Section 3.2), and when calculating the inside and outside scores during inference, we ac-

"'We calculated these improvement factors using a smaller experiment with full training and sixty 30-word test
sentences.
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Figure 6: Collapsing the duplicate training subtrees converts them to a graph and reduces the number of indexed
symbols significantly.

’ Parsing Model H No. of Indexed Symbols
Word-level Trees 1,900,056
Word-level Graph 903,056
Character-level Trees 12,280,848
Character-level Graph 1,109,399

Table 2: Number of indexed symbols for word-level and character-level parsing and their graph versions (for all-
fragments grammar with parent annotation and one level of markovization).

count for the collapsed subtree tokens by expanding the counts and scores using the corresponding
multiplicities. Therefore, we achieve the compaction with negligible overhead in computation.

S Improved Treebank Representations

5.1 Character-Level Parsing

The all-fragments approach to parsing has the added advantage that parsing below the word level
requires no special treatment, i.e., we do not need an explicit lexicon when sentences are considered
as strings of characters rather than words.
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Figure 7: Character-level parsing: treating the sentence as a string of characters instead of words.

dev (< 40) test (< 40) test (all)

] Model F1 EX F1 EX F1 EX
Constituent 88.2 33.6 88.0 31.9 87.1 29.8
Rule-Sum 88.0 33.9 87.8 33.1 87.0 30.9
Variational 87.6 344 87.2 32.3 86.4 30.2

Table 3: All-fragments WSJ results for the character-level parsing model, using parent annotation and one level of
markovization.

Unknown words in test sentences (unseen in training) are a major issue in parsing systems for
which we need to train a complex lexicon, with various unknown classes or suffix tries. Smoothing
factors need to be accounted for and tuned. With our implicit approach, we can avoid training a
lexicon by building up the parse tree from characters instead of words. As depicted in Figure 7,
each word in the training trees is split into its corresponding characters with start and stop boundary
tags (and then binarized in a standard right-branching style). A test sentence’s words are split up
similarly and the test-parse is built from training fragments using the same model and inference
procedure as defined for word-level parsing (see Sections 2, 3 and 4). The lexical items (alphabets,
digits etc.) are now all known, so unlike word-level parsing, no sophisticated lexicon is needed.

We choose a slightly richer weighting scheme for this representation by extending the two-weight
schema for CONTINUE rules (w,gx and wgepy) to a three-weight one: w; gy, Wworp, and wseyr for
CONTINUE rules in the lexical layer, in the portion of the parse that builds words from characters,
and in the portion of the parse that builds the sentence from words, respectively. The tuned values
are wspny = 0.35, Wworp = 0.15, wiex = 0.95 and a,, = 0. The character-level model achieves a
parsing accuracy of 88.0% (see Table 3), despite lacking an explicit lexicon.'?

Character-level parsing expands the training trees (see Figure 7) and the already large indexed
symbol space size explodes (1.9 million increases to 12.3 million, see Table 2). Fortunately, this is
where the packed graph encoding (Section 4.2) is most effective because duplication of character
strings is high (e.g., suffixes). The packing shrinks the symbol space size from 12.3 million to 1.1

12Note that the word-level model yields a higher accuracy of 88.5%, but uses 50 complex unknown word categories
based on lexical, morphological and position features, as described in Petrov et al. [2006]. Cohn et al. [2009] also uses
this lexicon based on unknown word-classes.
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million, a reduction by a factor of 11. This reduction increases parsing speed by almost a factor of
20 and brings down memory-usage to under 8GB.'?

5.2 Basic Refinement: Parent Annotation and Horizontal Markovization

In a pure all-fragments approach, compositions of units which would have been independent in a
basic PCFG are given joint scores, allowing the representation of certain non-local phenomena,
such as lexical selection or agreement, which in fully local models require rich state-splitting or
lexicalization. However, at substitution sites, the coarseness of raw unrefined treebank symbols
still creates unrealistic factorization assumptions. A standard solution is symbol refinement; John-
son [1998] presents the particularly simple case of parent annotation, in which each node is marked
with its parent in the underlying treebank. It is reasonable to hope that the gains from using large
fragments and the gains from symbol refinement will be complementary. Indeed, previous work
has shown or suggested this complementarity. Sima’an [2000] showed modest gains from enrich-
ing structural relations with semi-lexical (pre-head) information. Charniak and Johnson [2005]
showed accuracy improvements from composed local tree features on top of a lexicalized base
parser. Zuidema [2007] showed a slight improvement in parsing accuracy when enough fragments
were added to learn enrichments beyond manual refinements. Our work reinforces this intuition
by demonstrating how complementary they are in our model (~20% error reduction on adding
refinement to an all-fragments grammar, as shown in the last two rows of Table 4).

Table 4 shows results for a basic PCFG, and its augmentation with either basic refinement (parent
annotation and one level of markovization), with all-fragments rules (as in previous sections), or
both. The basic incorporation of large fragments alone does not yield particularly strong perfor-
mance, nor does basic symbol refinement. However, the two approaches are quite additive in our
model and combine to give nearly state-of-the-art parsing accuracies.

5.3 Additional Deterministic Refinement

Basic symbol refinement (parent annotation), in combination with all-fragments, gives test-set
accuracies of 88.5% (< 40 words) and 87.6% (all), shown as the Basic Refinement model in Ta-
ble 5. Klein and Manning [2003] describe a broad set of simple, deterministic symbol refinements
beyond parent annotation. We included ten of their simplest annotation features, namely: UNARY-
DT, UNARY-RB, SPLIT-IN, SPLIT-AUX, SPLIT-CC, SPLIT-%, GAPPED-S, POSS-NP, BASE-NP and
DOMINATES-V. None of these annotation schemes use any head information. This additional an-
notation (see Additional Refinement, Table 5) improves the test-set accuracies to 88.7% (< 40
words) and 88.1% (all), which is equal to a strong lexicalized parser [Collins, 1999], even though
our model does not use lexicalization or latent symbol-split induction.'*

I3Full char-level experiments (w/o packed graph encoding) could not be run even with 50GB of memory. We
calculate the improvement factors using a smaller experiment with 70% training and fifty 20-word test sentences.

“We further found that by pre-transforming the WSJ treebank with richer annotation from previous work (such as
the splits learned via hard-EM and 4 split-merge rounds of the Berkeley parser [Petrov et al., 2006]), we can obtain
state-of-the-art accuracies of up to 90% F1 with no change to our simple parser.
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Parsing Model \ F1 ‘

No Refinement (P=0, H=0)* 71.3
Basic Refinement (P=1, H=1)* 80.0
All-Fragments + No Refinement (P=0, H=0) 85.7
All-Fragments + Basic Refinement (P=1, H=1) 88.4

Table 4: F1 for a basic PCFG, and incorporation of basic refinement, all-fragments and both, for WSJ dev-set (< 40
words). P = 1 means parent annotation of all non-terminals, including the preterminal tags. H = 1 means one level
of markovization. *Results from Klein and Manning [2003].

89
88
87 —+
. 86 -
85 -

84 +

83 | 1 1 : !

0 20 40 60 80 100
Percentage of WSJ sections 2-21 used for training

Figure 8: Parsing accuracy F1 on the WSJ dev-set (< 40 words) increases with increasing percentage of training data.

6 Other Results

6.1 Parsing Speed and Memory Usage

The word-level parsing model using the whole training set (39832 trees, all-fragments) takes ap-
proximately 3 hours on the WSJ test set (2245 trees of <40 words), which is equivalent to roughly
5 seconds of parsing time per sentence; and runs in under 4GB of memory. The character-level
version takes about twice the time and memory. This novel tractability of an all-fragments gram-
mar is achieved using both coarse-pass pruning and packed graph encoding. Micro-optimization
may further improve speed and memory usage.
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test (< 40) test (all)

| Parsing Model F1 EX F1 EX

| FRAGMENT-BASED PARSERS |
Zuidema [2007] - - 83.8* 26.9*
Cohn et al. [2009] - - 84.0 -
Post and Gildea [2009] 82.6 - - -

| THIS WORK |
All-Fragments
+ Basic Refinement 88.5 33.0 87.6 30.8
+ Additional Refinement 88.7 33.8 88.1 31.7

| REFINEMENT-BASED PARSERS |
Collins [1999] 88.6 - 88.2 -
Petrov and Klein [2007] 90.6 39.1 90.1 37.1

Table 5: Our WSJ test set parsing accuracies, compared to recent fragment-based parsers and top refinement-based
parsers. Basic Refinement is our all-fragments grammar with parent annotation. Additional Refinement adds deter-
ministic refinement of Klein and Manning [2003] (Section 5.3). *Results on the dev-set (< 100).

6.2 Training Size Variation

Figure 8 shows how WSJ parsing accuracy increases with increasing amount of training data (i.e.,
percentage of WSJ sections 2-21). Even if we train on only 10% of the WSJ training data (3983
sentences), we still achieve a reasonable parsing accuracy of nearly 84% (on the development set,
< 40 words), which is comparable to the full-system results obtained by Zuidema [2007], Cohn
et al. [2009] and Post and Gildea [2009].

6.3 Other Language Treebanks

On the French and German treebanks (using the standard dataset splits mentioned in Petrov and
Klein [2008]), our simple all-fragments parser achieves accuracies in the range of top refinement-
based parsers, even though the model parameters were tuned out of domain on WSJ. For German,
our parser achieves an F1 of 79.8% compared to 81.5% by the state-of-the-art and substantially
more complex Petrov and Klein [2008] work. For French, our approach yields an F1 of 78.0% vs.
80.1% by Petrov and Klein [2008].'3

7 Conclusion

Our approach of using all fragments, in combination with basic symbol refinement, and even with-
out an explicit lexicon, achieves results in the range of state-of-the-art parsers on full scale tree-

15 A1l results on the test set (< 40 words).

16



banks, across multiple languages. The main take-away is that we can achieve such results in a
very knowledge-light way with (1) no latent-variable training, (2) no sampling, (3) no smoothing
beyond the existence of small fragments, and (4) no explicit unknown word model at all. While
these methods offer a simple new way to construct an accurate parser, we believe that this general
approach can also extend to other large-fragment tasks, such as machine translation.
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